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Abstract—This report presents a system “Elegant Al Pianist”
for the MIREX 2025 RenCon Expressive Piano Performance
Rendering Competition. The system transforms MusicXML
scores into expressive MIDI performances using a pipeline of
tokenization, detokenization, and post-processing. Leveraging
the note-aligned (n)-ASAP dataset, the system captures fine-
grained timing, dynamics, and articulation, achieving high-quality
expressive output with adaptive token processing and robust audio
rendering.is system enables Al to play expressive piano pieces
based on Musicology

I. INTRODUCTION

The MIREX 2025 RenCon Expressive Piano Performance
Rendering Competition challenges systems to render expressive
piano performances from MusicXML scores. Generate a
realistic performance through performance information such
as thythm and pedals. This task advances automated music
rendering, with technical challenges including mapping sym-
bolic scores to human performances and modeling tokens with
expressive timing.

Our system addresses these challenges through a pipeline of
tokenizers, model training, detokenizers, and audio rendering.
To generate refined and expressive audio, we utilize the note-
aligned (n)-ASAP dataset [3], processing features at note-level
granularity throughout the pipeline, which is more precise
than beat-based approaches, capturing fine-grained timing,
dynamics, and articulation. This report reviews related work,
details methodology of the generation process.

II. METHODOLOGY

Our system for the RenCon Expressive Piano Performance
Rendering Competition processes MusicXML scores and MIDI
performance data to generate expressive piano performances.
The architecture comprises four main components: (1) a
tokenizer to convert input scores and performances into aligned
tokens, (2) a model to learn and predict expressive parameters,
and(3) a detokenizer to transform predicted tokens back into
performance events with the score tokens. Below, we describe
each component in detail.
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A. Tokenizer

In expressive piano performance rendering, a tokenizer is
essential to convert note-level MusicXML scores and MIDI
performances into structured tokens with derived features, such
as onset deviations and local tempo. Unlike basic preprocessing,
it enables models to learn expressive nuances from aligned
data.

Our system processes MusicXML scores, MIDI
performances, and match files. We patched music21 Python
library with a NoteIdPreservingParser to extract note
IDs, ensuring robust alignment. The MusicXMLTokenizer

produces ScoreNoteToken (pitch, e.g., C4;
duration; articulations) and ScoreMetadata(e.g.,
composer, performer, genre). The MIDITokenizer

PerformanceNoteToken (pitch, velocity, onset/duration
in seconds) and PerformanceControl (sustain) converting
tokens from ticks to seconds. The PairedTokenizer
aggregates these into aligned token pairs using note IDs, with
suffix disambiguation (e.g., n1-1). The ScoreExplainer
processes these pairs to derive features like onset deviation
(Jonset = best — bscore) and local tempo, estimated using a
5-second sliding window to fit a smoothing spline.

B. Data Representation and Feature Embedding

1) Score and Performance Features: Score features include
pitch (discrete tokens like ‘A##1’), position (beat location), du-
ration (note values), performance directives (staccato, accent),
and part identifiers for voice separation. Performance features
capture expressive interpretation through onset deviation in
seconds and duration deviations in seconds for timing
adjustments, local tempo for tempo fluctuations, velocity for
dynamics, and sustain level for pedal usage.

2) Hybrid Embedding Mechanism: Different feature types
require tailored embedding strategies. Discrete features use
standard learnable embedding tables mapping each value to a
dense vector. Continuous features employ learned projection



networks with normalization and non-linearities to preserve
numerical relationships while mitigating gradient instability.

For pitch representation, we decompose traditional discrete
encoding into note class (C—B), accidental, and octave compo-
nents, mirroring Western tonal hierarchy. Unlike conventional
methods that treat C4 and C5 as unrelated categories, this shares
note embeddings across octaves, encoding octave equivalence
and improving generalization.

3) Musical Position Embedding: We replace the
standard absolute positional encoding with a hybrid
MusicalPositionalEmbedding. It integrates (1)

learned embeddings interpolated over continuous beat
positions, capturing fine-grained rhythmic nuances (e.g.,
syncopation at beat 1.5), and (2) sinusoidal encodings to
model periodic structures such as meter and phrase cycles.
The concatenation of these representations provides a unified
embedding that jointly encodes local rhythmic detail and
global temporal organization.

C. Model Architecture

Our transformer encoder-decoder architecture uses a 4-
layer bidirectional encoder for score context and 6-layer
causal decoder for autoregressive performance generation
[4]. A tempo predictor extracts chunk-level global tempo
from encoded scores via attention pooling, serving dual
purposes: conditioning the decoder for temporal coherence and
enabling beat-to-time conversion. The decoder incorporates
predicted average tempo and composer embeddings through
Style-Adaptive Layer Normalization (SALN) [1]. Rather than
concatenating conditioning signals with input token embed-
dings, the joint tempo—composer vector is injected into the
decoder’s normalization layers, allowing each transformer layer
to emphasize composer-specific style while preserving global
tempo consistency.

1) Output Prediction Strategy: The output layer employs
three specialized strategies. Discrete features use classification
heads, with sustain pedal as binary classification due to skewed
distribution. Following prior work [2], pitch prediction employs
auxiliary losses by simultaneously predicting the complete
pitch number, pitch class (pitch mod 12, representing note
identity), and octave (pitch div 12, representing register). This
multi-task approach helps the model learn hierarchical pitch
structure beyond individual pitch tokens. Continuous features
with perceptual quantization use binned regression with custom
boundaries for local tempo and velocity, while onset and
duration deviations use direct regression with Huber loss for
millisecond precision.

D. Generation

Due to Transformer sequence length constraints, we em-
ploy an overlapping window strategy segmenting complete
scores into 512-length windows with 256-token overlap. Using
cumulative overlap approach, the first window generates au-
toregressively while subsequent windows use previous outputs
as ground truth in overlap regions and generate only non-
overlapping sections. To ensure tempo continuity, the model

predicts tempo distribution parameters for each window then
applies exponential smoothing: tempoggooth =03- tempor(;f\)y

0.7- tempoglt;oj&. During generation, score-related features use
ground truth from input while performance-specific parameters

are generated autoregressively with nucleus sampling.

E. Detokenizer

The  detokenizer  obtains data from  model
outputs, consisting of performance information in
FullPerformanceToken sequences and runtime

configuration. The FullPerformanceToken includes
five types of information: score note data (pitch and
duration), performance note data, onset deviations, duration
deviations, and sustain levels. These components enhance the
expressiveness of the score by incorporating timing variations,
dynamic adjustments, and pedal effects, enabling musically
coherent MIDI output.

Runtime configuration includes composer_id, which
specifies the arrangement style, and sequence processing
parameters: sequence_length , overlap_ length ,
and stride , which control the segmentation and con-
tinuity of token sequences. Additional metadata, such as
use_decomposed_pitch=true, improves pitch accuracy
by separating pitch components, ensuring precise MIDI event
generation

IIT. POST-PROCESSING

Post-processing refines the generated MIDI events to
ensure musical coherence. In Detokenizer part, The
remove_overlaps function eliminates note overlaps by
limiting duration reductions to 50%, preventing simultaneous
notes of the same pitch. The smooth_tempo function applies
cubic spline interpolation to create natural tempo transitions,
avoiding abrupt changes.

The MIDI postprocessing and rendering process uses Logic
Pro. The MIDI information is imported to the application and
a ““Velocity processor” is applied to control the distribution
of note velocities. The rendering soundfont is based on the
“Steinway Grand Piano” patch available in Logic Pro with
additional reverb effect and audio dynamic compressor added
to ensure the rendered audio resembles an authentic recording.
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