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Abstract—We present a system for rendering full-length, ex-
pressive performance audio from MusicXML scores by adapting
a unified cross-modal Transformer. Our approach circumvents
direct symbolic processing; instead, we engrave the input score to
images and leverage the model’s direct image-to-audio synthesis
pathway, which generates expressive audio without requiring
an intermediate symbolic performance representation. To scale
from short training crops (1–3 systems) to complete works, we
introduce a lightweight inference-time method: a two-system
sliding window that uses cross-attention analysis to detect precise
system boundaries in the audio output. This allows the fixed
model backbone to produce seamless, long-form audio without
any retraining.

I. INTRODUCTION

Expressively translating written music into audio remains
a core MIR goal. Our earlier work U-MusT: Unified Cross-
modal Translation of Score Images, Symbolic Music, and
Performance Audio [1] unifies score images, symbolic no-
tation, MIDI, and performance audio within a single en-
coder–decoder Transformer trained on a 1,300-hour paired
corpus with additional symbolic resources, achieving both the
first score-image-conditioned audio generation and a marked
reduction in OMR error.

Running the model in its image-to-audio direction yields im-
plicit performance modelling: phrasing, rubato, and dynamics
emerge directly from engraved images, with no explicit sym-
bolic performance layer. We exploit this property for RenCon
2025 by engraving the provided MusicXML scores into page
images and feeding them to the unchanged image-to-audio
branch.

A simple inference-time sliding window, described next,
then scales the fixed backbone from short training crops to
complete pieces.

II. METHODOLOGY

We employ the unified sequence-to-sequence Transformer
from U-MusT, trained jointly on three directions: Optical

Music Recognition, MIDI-to-Audio, and image-to-audio. All
modalities are serialized as token sequences: (i) images and
audio via residual vector quantization (RVQ) codebooks (RQ-
VAE [2] for images, DAC [3] for audio), and (ii) symbolic
MusicXML and MIDI via linearized MusicXML(LMX) [4]
and MIDI-like token [5], [6] vocabularies. During training,
multiple consecutive system image crops can be concatenated
with a special <SEP> token.

A. Preprocessing from MusicXML to Image Tokens

Given that the RenCon task supplies MusicXML while our
inference path consumes system image tokens, we convert as
follows (no additional stages retained):

1) Render each input MusicXML score to high-resolution
engraved page images using MuseScore [7].

2) Detect musical system regions on each rendered page
using our fine-tuned YOLOv8-medium [8] detector
(YOLO-system); crop each system.

3) Estimate staff height for each system crop with a second
YOLOv8-medium model (YOLO-staff); resize the
crop so its staff-height distribution matches that of the
translation model’s training data.

4) Tokenize each normalized system crop with the trained
RQVAE, producing discrete RVQ image token se-
quences. Consecutive system token sequences are con-
catenated with a single <SEP> token between them
when forming two-system windows for inference.

B. System-Continuation Inference

The model was trained only on short windows (1–3 sys-
tems). To generate full-length performances we slide a two-
system window (Sj , Sj+1) across the score.

For each window we:
• Form the input token sequence by concatenating the RVQ

tokens of Sj , an explicit <SEP>, then those of Sj+1,
along with positional and modality indices.



Fig. 1. Cross-attention matrix A (x: audio tokens, y: flattened image tokens).
The horizontal band at row isep = 211 marks the [SEP] token; diagonal
energy traces indicate monotonic image–audio alignment up to the boundary
before attention shifts past [SEP].

• Run autoregressive image-to-audio generation. For the
first window (j = 0) no previously generated audio
prefix is supplied. For every subsequent window (j >
0) we supply, as conditioning prefix, the audio token
segment previously generated for the second system of
the preceding window (i.e., the portion aligned with Sj

in window (Sj−1, Sj)). During each forward pass we
capture cross-attention tensors from selected heads in the
last decoder layer, which exhibit distinct near-diagonal
alignment structure.

• Let the cross-attention matrix be A ∈ RI×T with rows
(flattened image tokens) i = 1, . . . , I and columns (audio
token steps) t = 1, . . . , T , and let isep denote the [SEP]
image token row. For each audio step t, define pt =∑

i>isep
Ai,t, the proportion of attention mass on image

tokens after the separator. The first t for which pt exceeds
a threshold (e.g. 0.5) for at least three consecutive steps is
taken as the boundary separating the audio aligned with
Sj from that aligned with Sj+1.

• Slice and accumulate the audio tokens up to the boundary
into the global sequence and use the following run of
tokens as the conditioning prefix for the next window.

• Repeat for the next overlapping window (Sj+1, Sj+2)
until all systems are processed, then concatenate accu-
mulated global audio token sequence and decode them
to waveform with the DAC codec.

This two-system sliding procedure preserves measure-level
alignment across long scores by enforcing a monotonic hand-
off exactly at the separator. It minimizes boundary artifacts and
cumulative tempo drift by reusing the previously generated
second-system audio verbatim. The scalability of the length
is achieved entirely in inference time through the sliding
two-system window; no additional training or architectural
change is required.

III. DATASETS

All details are elaborated in [1].

A. YouTube Score-Video Dataset (YTSV)

We use the large in-the-wild YouTube score–following
video corpus introduced in our previous work [1]. We obtain
433,920 image–audio segments drawn from 12,217 videos

(1,341 h total). Two videos of Beethoven: 32 Variations in
C minor, WoO 80 – Theme and Variations 1–5 (YouTube
IDs KZiSpxyUsSg and nA0cCarOf54) are present in the
training split; none of the other submission pieces appear in
the training data.

B. Additional Modal Datasets

To supply complementary modality supervision, we add
three targeted resources:

• GrandStaff [9] (augmented synthetic pianoform sys-
tems) and OLiMPiC [4] (synthetic + scanned pianoform
pages) are used for OMR task, enlarging visual engraving
diversity and stabilizing symbol decoding.

• MAESTRO [10] (199 h paired performance audio +
aligned MIDI) is used for the MIDI-to-Audio synthesis
task, anchoring high-fidelity timing and pedal articulation
in the audio codec token space.

IV. POST-PROCESSING

None applied. We submit the raw waveform obtained by
decoding the model-inferenced audio token sequence with
the DAC codec. No tempo/dynamics control, symbolic quan-
tization, editing, EQ, reverb, or mastering was performed;
expressivity is entirely model-internal.
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