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Abstract—This submission presents a piano transcription sys-
tem that utilizes the feature-wise linear modulation (FiLM).
The system is designed with the conventional convolutional and
recurrent networks as the FiLM generator. The fusion of features
from different tasks is also implemented using the FiLM. The
FiLM-based model has only 1.2M trainable parameters.

I. INTRODUCTION

The purpose of piano transcription is to transform piano
music to note events with pitch, onset, offset and other music
symbols. With the development of deep learning, the neural
networks (NNs) have been widely used in piano transcription.
The multi-task framework achieved superior performance in
transcription, such as the onsets and frames (OAF) model [1],
[2]. In the multi-task framework, frame-wise pitch estimation,
note-level onset and offset detection, and velocity estimation
are the main transcribing subtasks. In this work, we implement
a multi-task piano transcription system with feature-wise linear
modulation (FiLM).

II. FEATURE-WISE LINEAR MODULATION

The FiLM layers were first proposed in [3] as a general-
purpose conditioning method for visual reasoning tasks.
Specifically, the modulation operation of the FiLM layers is
shown as:

FiLM(x|γ, β) = γ ⊙ x+ β (1)

where x is the input feature, γ and β are the context features
generated from the FiLM generator. ⊙ refers to Hadamard
product.

III. SYSTEM ARCHITECTURE

The multitask piano transcription task in this study aims
to transcribe the T -frame input spectrogram into multiple
outputs. The outputs are the T -frame and K-pitch piano rolls
of transcription subtasks. These subtasks include frame-level
pitch estimation, onset detection, offset detection, and velocity
estimation.

The overall schematic diagram of the proposed multitask
piano transcription model is shown in fig:overall. There are
mainly three branches in the proposed multitask piano tran-
scription model, which are the onset, the velocity and the frame
& offset branches.

The system comprises the input layer, the FiLM-based lay-
ers, and the output layer. There are a total of four FiLM-based
layers stacked in every subtask branch. In each FiLM-based
module, the feature map is firstly passed by a convolution
layer. In the onset branch, these prepared γ and β features are
detached and sent to the velocity and the frame branches. Then
the velocity and the frame branches receive and concatenate
these γ and β features to the parallel positions. After that, all
the features are rearranged with temporal information through
the LSTMs. Finally, the input is linear modulated by the
generated frequency-time feature. To generate proper shape
of the model output, there is a multilayer perceptron (MLP)
connected to the FiLM-based layers in each branch. All the
output piano rolls are then scaled by a sigmoid function except
for the velocity branch as the final model output.

The losses for the frame, onset, and offset are calculated
with binary cross-entropy. The loss for the velocity is a 128-
category cross-entropy loss. Specifically, the losses are:

lonset =

K∑
k=1

T∑
t=1

lBCE(Ionset(t, k), Ponset(t, k)) (2)

lframe =

K∑
k=1

T∑
t=1

lBCE(Iframe(t, k), Pframe(t, k)) (3)

loffset =

K∑
k=1

T∑
t=1

lBCE(Ioffset(t, k), Poffset(t, k)) (4)

lvelocity =

K∑
k=1

T∑
t=1

lCCE(Ivelocity(t, k), Pvelocity(t, k)) (5)

where lBCE is the binary cross-entropy loss function, lCCE
is the categorical cross-entropy loss function, I and P are
the ground-truth and model-predicted values, respectively. The
total loss function is calculated by:

l = lonset + lframe + loffset + lvelocity (6)
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Fig. 1. Architecture of the piano transcription system.

IV. DATASET

The MAESTRO dataset [2] contains about 200 hours of
high-quality realistic recordings and MIDI files. We use the
provided train, validation, and test splits in the MAESTRO
V3.0.0 dataset.

The model trained on MAESTRO V3.0.0 is evaluated on
the MAPS dataset [4]. We use 60 audio recordings of realistic
piano pieces in the “ENSTDkAm” and “ENSTDkCl” as the
evaluation test split.

The model trained on MAESTRO V3.0.0 is also evaluated
on the SMD dataset [5]. The dataset contains 50 recordings.
Similar to Maestro dataset, the SMD dataset was created by
recording human performance on a Yamaha Disklavier.

V. PREPROCESSING

The librosa [6] library is used to preprocess the piano
audios. The audio is converted to mono and resampled to
16kHz. Each piano audio is transformed to CQT spectra with
a Hanning window, minimum frequency of 27.5Hz (A0), a 20-
millisecond frame hop length, every 48 bins within an octave
and a total 352 bins. The pretty midi [7] library is used to
generate the piano rolls. We also consider the influence of the
sustain pedal on extending notes duration. Each piano note is
extended until the pedal is released (pedal value is less than
64 in MIDI files) or the same note is pressed again.

VI. TRAINING

The piano transcription model is trained on MAESTRO
V3.0.0 training set without data augmentation. There are a
total of 1.2M trainable parameters. The training is optimized
with the Adam [8] optimizer. We use a learning rate of 0.0005
and a batch size of 10. The best model is selected based on
the F1 scores in the validation stage.

VII. TRANSCRIBING

To obtain the note events, the heuristic note event decoding
method [1] is utilized to decode the note events from the output
post-probability piano rolls. All the thresholds are decided
based on the result of the validation set. The pretty midi library
is used to generate the MIDI files.
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