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ABSTRACT

Our submission to MIREX2025 Audio Chord Estimation
task is based on a deep neural network (DNN) chord es-
timator that is trained in a semi-supervised manner. To
implement the semi-supervised training, we first formu-
late a deep generative model representing the generative
process of audio chroma features from discrete chord la-
bels and continuous latent features. The posterior distribu-
tions of the chord labels and latent features are estimated
with a DNN-based inference model. The generative and
inference models form a variational autoencoder (VAE)
which can be trained jointly in a semi-supervised manner.
Considering the pitch-invariant and equivariant nature of
the latent variables, we further apply a pitch manipulation
technique during the training process to enhance the in-
ference model’s ability to disentangle the chord labels and
latent features. We used a combination of existing chord
annotation datasets, self-annotated data, and synthesized
data pairs generated from a conditional music generation
model for supervised training, and additionally collected a
set of music tracks without chord annotations for unsuper-
vised learning. We experimentally show that the proposed
method can effectively leverage the unlabeled data to im-
prove the chord estimation performance.

1. INTRODUCTION

Audio chord estimation is a fundamental task in the field of
music information retrieval, aiming to identify the chords
present in an audio signal. It is a well-studied problem
where various approaches focusing on different aspects
were proposed in the literature, including the design of au-
dio features and acoustic models, training techniques, and
inference-time post-processing techniques. In this work,
we present a chord estimation method that is trained in a
semi-supervised manner. Our chord estimator is built upon
a variational autoencoder (VAE) framework [1] that mod-
els the generative process of audio features from discrete
chord labels and continuous latent features. This work is
based on a past work by the author [2], but with some mod-
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Figure 1. The overview of the VAE architecture consist-
ing of a generative model of chroma features and an infer-
ence model for the latent variables. Dashed arrows indicate
stochastic relations.

ifications to the neural network architecture and training
method.

2. PROPOSED METHOD

This section briefly describes the formulation and training
method for the proposed chord estimator.

2.1 Task Formulation

The formulation begins with a generative model of chord
label s, latent feature z, and audio feature x. The feature
x is a sequence of 3-channel chroma vector, each channel
representing the pitch-class activation in the lower, mid-
dle, and higher pitch ranges respectively, as defined in [3].
The chroma vectors are extracted from the audio spec-
trogram using a pre-trained chroma feature extractor de-
scribed in Section 2.2. s is a 2-channel label sequence rep-
resenting the root notes (12 pitch classes) and chord types
({N,maj, min, maj7, min7,7}) of the chord labels. z is
a continuous latent feature vector that captures the pitch-
invariant characteristics of the audio feature x, which com-
plements the information of the chord label s for deriving
the audio feature.

We model the joint distribution of the audio feature,
chord label, and latent feature as follows:

po(x,s,2) = po(x|s, z)p(s)p(z) )

where pg(x|s, z) is implemented with a deep neural net-
work (DNN) with parameters 6 that estimates the distri-
butions of the chroma features given the chord labels and
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Figure 2. The computation flow of the supervised and unsupervised objectives. Dashed lines indicate the stochastic
sampling process using reparameterization trick. The gray area correspond to the terms of the objective functions.

latent features. p(s) and p(z) are prior distributions over
the chord labels and latent features, respectively. Con-
cretely, p(s) is a first-order Markov model favoring self-
transitions, and p(z) is a standard normal distribution.

To model the posterior distribution of the chord label
and latent feature given the audio features, we introduce
an inference model g4 (s, z|x) which is also implemented
with a DNN with parameters ¢. The generative model, the
inference model, and the prior distributions form a varia-
tional autoencoder (VAE) framework, which can be jointly
trained in a semi-supervised manner (Figure 1). The train-
ing method is described in Section 2.3.

Both the generative and inference models are imple-
mented with DNNs with appropriate input and output di-
mensions. The DNNs follow the "encoder-only Trans-
former" architecture with rotary positional encoding (often
referred to as RoFormer [4]).

2.2 Chroma Feature Extractor

The chroma feature extractor is a DNN that outputs a se-
quence of 3-channel chroma vectors from audio spectro-
gram as input, which is originally proposed in [3]. Specif-
ically, we implemented the feature extractor using another
RoFormer-architecture DNN with 36-dimensional output.

The chroma feature extractor is trained in a supervised
manner with a set of data pairs of music audio and their
corresponding target chroma vectors. In this work, we used
Slakh2100 [5] dataset to generate the data pairs. The target
chroma features are converted from the MIDI data using
the following steps:

1. Remove the drums and percussive tracks from the
MIDI data,

2. Convert the MIDI data to frame-based pianoroll rep-
resentation using the pretty-midi ! library,

3. For each frame, identify the highest and lowest pitch
notes, and assign their pitch classes to the higher and
lower chroma channels, respectively. Then, assign

'https://github.com/craffel/pretty-midi

the pitch classes of the remaining notes to the middle
chroma channel.

2.3 Semi-supervised training

Given a set of audio features of chord-annotated tracks
(X), their corresponding chord label sequence (S), and a
set of audio features of non-annotated tracks ()_(), the ob-
jective function of the VAE is defined as follows:

£semi = Z ‘Csup(xv S) + Z ‘Cunsup(x) (2)

xeX xeXUX

Figure 2 illustrates the computation flow of the super-
vised and unsupervised objectives. Lg,p(%,s) is the su-
pervised objective function for training both the generative
and inference models in the supervised manner:

Lsup(x,8)
= log po(x[s, zre) — K L(qy(zre|x)||p(z))  (3)
+logqe(s|x)

where z,e is a sample from g4(z|x), obtained by repa-
rameterization trick. log py(x|s, zre) is the log-likelihood
of the audio features given the chord labels and the sam-
pled latent features with respect to the generative model
po. logge(s|x) is the log-likelihood of the chord labels
with respect to the inference model gy. logpe (XS, Zre)
and logqy(s|x) are calculated as the negative cross entropy
between the predicted and target audio features and chord
labels, respectively.

[Zunsup(}_() is the unsupervised objective function that
maximizes the likelihood of the audio features X with re-
spect to the generative model:

Eunsup(x)
= log po(X|Sre; Sre) — KL(q¢(zre|x)Hp(z)) “4)
+ Entropy[qqs(s|x)] + Eq, (slx) [log p(s)]

where s, is a sample from ¢ (s|x), obtained by Gumbel-
softmax reparameterization trick [6]. E,, (s|x)[log p(s)] is



the expected log-likelihood of the chord labels with re-
spect to the prior distribution p(s). As p(s) is a first-order
Markov model, the expectation term is optimized using
an expectation-maximization (EM)-like technique as de-
scribed in [7].

Both Lgp(%,8) and Ly,sup(x) are derived from the
variational lower bound of the log-likelihood of the audio
features [2]. Intuitively, by optimizing the unsupervised
objective, the inference model is trained to output chord
label posteriors that maximize the likelihood of the audio
features with respect to the generative model, which leads
to coherent chord label sequences.

A generative model with well-disentangled latent vari-
ables is considered beneficial for unsupervised training.
Therefore, during the training phase, an additional pitch
manipulation technique is introduced to enhance the dis-
entanglement between the chord labels and latent features.
This training technique is based on the fact that the root
notes of the chords are pitch-equivariant to the input audio
feature, while the chord types and the latent features are
pitch-invariant [8], according to our formulation. On each
training iteration a random pitch shift value n is sampled,
and pitch-shifting is applied to the input audio feature x
and the chord label s by n semitones, resulting in a new
audio feature x” and a new chord label s’. Then, the super-
vised and unsupervised objectives are calculated with the
shifted variables as follows:

Lsup(X,8)
= logpg(x’|s/, Zre) — KL(Q(#(Zre‘X)Hp(Z)) (5)
+ loggs(s|x)

Lunsup(x)
= log po(X'|Sper Zre) — K L(qg(2re|x)||p(z))  (6)
+ Entropylqy(s[x)] + Eq, (s|x) [log p(s)]

2.4 Inference

The chord label sequence of a given audio feature is esti-
mated using the inference model q4. After estimating the
posterior distributions of the roots and chord types using
gy, the Viterbi algorithm is used to derive the optimal tem-
porally coherent path of chord labels with the transition
probabilities defined in the prior distribution p(s).

3. DATASET

The chord estimator is trained on the pairs of extracted
chroma features and the time-aligned chord annotations.
The datasets used for supervised training are:

¢ Isophonics: Chord annotations for popular musics
from The Beatles, Queen, and Zweieck [9], which
includes 222 tracks in total.

¢ Billboard 2012: Chord annotations for American
popular music from the 1950s through the 1990s,
which includes 731 tracks in total [10].

* RWC-POP: Chord annotations on 100 popular mu-
sic tracks from the RWC-Popular Database [11].
The annotations are made by MARL at NYU Mu-
sic Technology program 2.

e USPOP2002: Chord annotations on 195 popular
music tracks from the USPOP-2002 Dataset [12].
The annotations are made by MARL at NYU Mu-
sic Technology program.

¢ Robbie Williams: Chord annotations of the first five
albums of Robbie Williams containing 65 tracks.

¢ Self-Annotated: We manually annotated 12 tracks
from the author’s personal music collection. We
chose popular songs that extensively use seventh
chords to remedy the unbalanced distribution of
chord types in the existing datasets.

* Generated: We generated 10000 pairs of anno-
tated music segments using a text-to-music genera-
tion model JASCO [13]. Each music segment is gen-
erated by prompting a randomly-chosen chord pro-
gression from the Chordonomicon dataset [14] and
a text prompt from the MusicCaps dataset [15].

For unsupervised training, we additionally collected
1453 music tracks from internal collection, which is
mainly comprised of popular musics from various coun-
tries.

Data augmentation is applied to both the supervised and
unsupervised datasets, except for the Generated dataset.
The augmentation is performed by applying pitch shifting
to the music audio and corresponding chord labels in the
range of -4 to +4 semitones.

4. EXPERIMENTS

We conducted comparative experiments to demonstrate
the effectiveness of the proposed semi-supervised training
method. The RWC-POP dataset is used as the test set in
these experiments, and is excluded from the training set.
The following training configurations are compared:

* Supervised: The inference model is trained in a su-
pervised manner by maximizing the supervised ob-
jective log g4 (s|x), using the annotated dataset only,

* Semi-supervised: The VAE is trained in a semi-
supervised manner by maximizing the combined ob-
jective Lgemi, using the annotated dataset only (the
same training data as the Supervised configuration),

* Semi-supervised+: The VAE is trained in a semi-
supervised manner by maximizing the combined
objective Lgepmq, using the annotated and non-
annotated datasets.

Our submission considers only the "Seventh chords"
vocabulary ({N,maj, min,maj7,min7,7}), and does
not recognize chord inversions. Therefore, we evaluate the

2https://github.com/tmc323/Chord-Annotations



majmin | seventh
Supervised 78.49 63.23
Semi-supervised 79.29 64.38
Semi-supervised+ | 79.79 65.66

Table 1. Evaluation scores on the test set for different
training configurations. The RWC-POP dataset is used as
the test set.

performance of the chord estimator with the majmin and
seventh metrics.

Table 1 shows the evaluation scores on the test set
for different training configurations. The chord estima-
tor trained with the semi-supervised method on the super-
vised dataset (the Semi-supervised configuration) over-
performed the Supervised configuration. The chord es-
timation performance further improved when the non-
annotated dataset was added to the training set (the Semi-
supervised+ configuration). These results indicates the ef-
fectiveness of both the semi-supervised learning method
and the usage of non-annotated data for improving chord
estimation performance.

5. CONCLUSION

We present a semi-supervised audio chord estimator based
on a VAE framework. We formulated a VAE that regards
the chord labels and latent features as the latent variables of
the generative model of audio chroma features, and trained
a chord inference model in the semi-supervised manner.
Based on the pitch-invariant and equivariant nature of the
latent variables, a pitch manipulation technique is applied
during the training process to enhance the disentanglement
of the chord labels and latent features. Our experiments
demonstrate the effectiveness of the proposed method for
improving chord estimation accuracy.
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