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ABSTRACT 

This extended abstract presents our submission on auto-

matic chord estimation. We build upon ChordFormer, a 

model based on the Conformer architecture, by modifying 

it to estimate scale degrees rather than absolute pitch. This 

approach enables the system to recognize musical keys and 

distinguish enharmonic equivalents. Furthermore, we in-

troduce the Octavewise Convolution Module, applied 

prior to the Conformer layers, which performs convolution 

on an octave basis. This design facilitates the capture of 

intervallic and scale-related features. 

1. INTRODUCTION 

Automatic chord estimation is the task of estimating the 

chords being played, along with their corresponding time 

intervals, from audio data. It is an important problem with 

applications in music analysis and music genre classifica-

tion. In general, acoustic features are extracted—typically 

using techniques such as the Fourier transform—and used 

as inputs to a model. The model produces chord annota-

tions containing the start time, end time, and chord label. 

In previous studies, it has been common practice to 

standardize the notation of enharmonically equivalent 

pitches during preprocessing, thereby representing pitch 

classes with 12 categories. However, from the perspective 

of music analysis, distinguishing enharmonic equivalents 

is important, since the scale degree within a given key can 

reflect the harmonic function and role of a chord. 

In this submission, we propose an approach that decom-

poses the chord recognition task into two subtasks: key es-

timation and scale-degree estimation. The final chord label 

is then determined based on the estimated key and scale 

degree. 

2. METHOD 

In this section, we describe an overview of the system, and 

our original contributions: Octavewise Convolution and a 

novel chord representation. 

2.1 ChordFormer 

Our model is based on ChordFormer [1]. ChordFormer 

adopts the Conformer architecture [2] that combines con-

volutional neural networks (CNNs) for capturing local pat-

terns with the Transformer’s self-attention mechanism for 

modeling long-term dependencies. The ChordFormer ar-

chitecture consists of three primary modules: Prepro-

cessing Module, Conformer Block, Decoding Model. 

 

 

Figure 1. Overview of the ChordFormer architecture [1] 

2.1.1 Feature Extraction 

ChordFormer uses Constant-Q spectrograms as features, 

computed with the librosa library [3]. The audio signals 

were sampled at 22,050 Hz, and the spectrograms were 

computed with a hop length of 512. The frequency range 

was set from C1 (inclusive) to C8 (exclusive), with 36 bins 

per octave, resulting in a 252-dimensional feature repre-

sentation. The spectrogram was then converted to a decibel 

scale with respect to the maximum amplitude. 

2.1.2 Chord Representation 

ChordFormer represents chords using a six-dimensional 

vector, with each dimension corresponding to an essential 

component of the chord. Specifically, the first dimension 

encodes the root note and triad type, the second dimension 

represents the bass note, and the third through sixth dimen-

sions correspond to the seventh, ninth, eleventh, and thir-

teenth, respectively. 

• Root + Triad: where root ∈ {N, C, C#/Db, …, B} and 

triad ∈ {N, maj, min, sus4, sus2, dim, aug} 

• Bass: {N, C, C#/Db, …, B} 

• 7th: {N, 7, b7, bb7} 

• 9th: {N, 9, #9, b9} 

• 11th: {N, 11, #11} 

• 13th: {N, b13, 13} 
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2.2 Octavewise Convolution 

In the proposed model, the acoustic features are first pro-

cessed with a convolutional kernel of size one octave in 

the frequency direction (kernel_size = bins_per_octave), 

sliding by one semitone (stride = bins_per_octave // 12). 

The output is then passed through a linear layer to obtain 

a 256-dimensional representation, which is fed into the 

Conformer. This design aims to facilitate the model’s abil-

ity to capture information related to pitch intervals and 

scale structure. 

 

Figure 2. Visual illustration of Octavewise Convolution 

2.3 Chord Representation 

Conventional chord representations have two major limi-

tations. First, since enharmonically equivalent notes are 

standardized, the system cannot output chord labels that 

are appropriate within a given key. For example, in a piece 

in B major, the 4-5-3-6 progression would be E–F#–D#–

G#. However, if everything is written using flat notation, 

it would become E–Gb–Eb–Ab, which leads to awkward 

scale-degree labels such as bbVI or bIV when analyzing 

chord functions. This also raises the possibility that mod-

ulation may render contextual information ineffective. 

Second, chords that share similar pitch content and usage 

but are written differently (e.g., C6 and Am/C) are repre-

sented in very different ways. As a result, gradients may 

propagate in undesirable directions. 

The proposed model is designed to distinguish enhar-

monically equivalent notes by decomposing the root into 

key and scale degree, thereby estimating three elements: 

key, root degree, and bass. In addition, 36 additional di-

mensions are introduced to represent the presence of each 

pitch from C to B, or intervals from perfect unison to major 

seventh relative to the root, as well as those relative to the 

bass. In total, chords are represented as 39-dimensional 

vectors. 

• Key: {N, C, C#/Db, …, B} 

• Root Degree: {N, I, #I, bII, …, VII} 

• Bass: {N, C, C#/Db, …, B} 

• Absolute Pitches (12 dim): {N, Contains} 

• Intervals from Root: (12 dim): {N, Contains} 

• Intervals from Bass: (12 dim): {N, Contains} 

 

 

Figure 3. Overview of our system 

3. TRAINING 

In this section, we describe the data we used for training 

and related details of this submission. 

3.1 Datasets 

We used a total of 1,163 songs for training the model: 560 

songs from the McGill-Billboard dataset [4] and 603 songs 

that we collected ourselves. From the McGill-Billboard 

dataset, we extracted musical key information from the 

SALAMI-format annotations, made some modifications, 

and then used it. 

3.2 Data Augmentation 

We employed two major strategies for data augmentation. 

The first, following previous studies, was to pitch-shift the 

input CQT spectrograms by -5 to +6 semitones and adjust 

the labels accordingly. The second was to apply SpecAug-

ment from torchaudio, adding noise and performing time-

stretching in the range of 0.8× to 1.2×, each with a proba-

bility of 50%. 

3.3 Training Method 

The model was trained following the same procedure as 

ChordFormer. Using the AdamW optimizer, the initial 

learning rate was set to 1.0 × 10−3, and it was reduced by 

90% if the validation loss did not improve for five consec-

utive epochs. To prevent overfitting, training was termi-

nated once the learning rate dropped below 1.0 × 10−6. 

4. RESULTS 

The evaluation metric (WCSR) computed using mir_eval 

[5] with 178 songs from the Isophonics dataset and 100 

songs from the RWC-POP [6] dataset is presented below. 

 

Metrics Isophonics RWC-POP 

Root 0.8234 0.8454 

MajMin 0.8139 0.8286 

MajMin-Inv 0.7875 0.8082 

Seventh 0.6645 0.6795 

Seventh-Inv 0.6470 0.6616 

Table 1. Weighted Chord Symbol Recall (WCSR) across 

datasets 
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