

MIREX 2025 Submission: Degree-Based Automatic

Chord Recognition with Enharmonic Distinction

Masayuki Doai

Keio University
masayukid@keio.jp

ABSTRACT

This extended abstract presents our submission on auto-

matic chord estimation. We build upon ChordFormer, a

model based on the Conformer architecture, by modifying

it to estimate scale degrees rather than absolute pitch. This

approach enables the system to recognize musical keys and

distinguish enharmonic equivalents. Furthermore, we in-

troduce the Octavewise Convolution Module, applied

prior to the Conformer layers, which performs convolution

on an octave basis. This design facilitates the capture of

intervallic and scale-related features.

1. INTRODUCTION

Automatic chord estimation is the task of estimating the

chords being played, along with their corresponding time

intervals, from audio data. It is an important problem with

applications in music analysis and music genre classifica-

tion. In general, acoustic features are extracted—typically

using techniques such as the Fourier transform—and used

as inputs to a model. The model produces chord annota-

tions containing the start time, end time, and chord label.

In previous studies, it has been common practice to

standardize the notation of enharmonically equivalent

pitches during preprocessing, thereby representing pitch

classes with 12 categories. However, from the perspective

of music analysis, distinguishing enharmonic equivalents

is important, since the scale degree within a given key can

reflect the harmonic function and role of a chord.

In this submission, we propose an approach that decom-

poses the chord recognition task into two subtasks: key es-

timation and scale-degree estimation. The final chord label

is then determined based on the estimated key and scale

degree.

2. METHOD

In this section, we describe an overview of the system, and

our original contributions: Octavewise Convolution and a

novel chord representation.

2.1 ChordFormer

Our model is based on ChordFormer [1]. ChordFormer

adopts the Conformer architecture [2] that combines con-

volutional neural networks (CNNs) for capturing local pat-

terns with the Transformer’s self-attention mechanism for

modeling long-term dependencies. The ChordFormer ar-

chitecture consists of three primary modules: Prepro-

cessing Module, Conformer Block, Decoding Model.

Figure 1. Overview of the ChordFormer architecture [1]

2.1.1 Feature Extraction

ChordFormer uses Constant-Q spectrograms as features,

computed with the librosa library [3]. The audio signals

were sampled at 22,050 Hz, and the spectrograms were

computed with a hop length of 512. The frequency range

was set from C1 (inclusive) to C8 (exclusive), with 36 bins

per octave, resulting in a 252-dimensional feature repre-

sentation. The spectrogram was then converted to a decibel

scale with respect to the maximum amplitude.

2.1.2 Chord Representation

ChordFormer represents chords using a six-dimensional

vector, with each dimension corresponding to an essential

component of the chord. Specifically, the first dimension

encodes the root note and triad type, the second dimension

represents the bass note, and the third through sixth dimen-

sions correspond to the seventh, ninth, eleventh, and thir-

teenth, respectively.

• Root + Triad: where root ∈ {N, C, C#/Db, …, B} and

triad ∈ {N, maj, min, sus4, sus2, dim, aug}

• Bass: {N, C, C#/Db, …, B}

• 7th: {N, 7, b7, bb7}

• 9th: {N, 9, #9, b9}

• 11th: {N, 11, #11}

• 13th: {N, b13, 13}

This document is licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

© 2025 The Authors.

2.2 Octavewise Convolution

In the proposed model, the acoustic features are first pro-

cessed with a convolutional kernel of size one octave in

the frequency direction (kernel_size = bins_per_octave),

sliding by one semitone (stride = bins_per_octave // 12).

The output is then passed through a linear layer to obtain

a 256-dimensional representation, which is fed into the

Conformer. This design aims to facilitate the model’s abil-

ity to capture information related to pitch intervals and

scale structure.

Figure 2. Visual illustration of Octavewise Convolution

2.3 Chord Representation

Conventional chord representations have two major limi-

tations. First, since enharmonically equivalent notes are

standardized, the system cannot output chord labels that

are appropriate within a given key. For example, in a piece

in B major, the 4-5-3-6 progression would be E–F#–D#–

G#. However, if everything is written using flat notation,

it would become E–Gb–Eb–Ab, which leads to awkward

scale-degree labels such as bbVI or bIV when analyzing

chord functions. This also raises the possibility that mod-

ulation may render contextual information ineffective.

Second, chords that share similar pitch content and usage

but are written differently (e.g., C6 and Am/C) are repre-

sented in very different ways. As a result, gradients may

propagate in undesirable directions.

The proposed model is designed to distinguish enhar-

monically equivalent notes by decomposing the root into

key and scale degree, thereby estimating three elements:

key, root degree, and bass. In addition, 36 additional di-

mensions are introduced to represent the presence of each

pitch from C to B, or intervals from perfect unison to major

seventh relative to the root, as well as those relative to the

bass. In total, chords are represented as 39-dimensional

vectors.

• Key: {N, C, C#/Db, …, B}

• Root Degree: {N, I, #I, bII, …, VII}

• Bass: {N, C, C#/Db, …, B}

• Absolute Pitches (12 dim): {N, Contains}

• Intervals from Root: (12 dim): {N, Contains}

• Intervals from Bass: (12 dim): {N, Contains}

Figure 3. Overview of our system

3. TRAINING

In this section, we describe the data we used for training

and related details of this submission.

3.1 Datasets

We used a total of 1,163 songs for training the model: 560

songs from the McGill-Billboard dataset [4] and 603 songs

that we collected ourselves. From the McGill-Billboard

dataset, we extracted musical key information from the

SALAMI-format annotations, made some modifications,

and then used it.

3.2 Data Augmentation

We employed two major strategies for data augmentation.

The first, following previous studies, was to pitch-shift the

input CQT spectrograms by -5 to +6 semitones and adjust

the labels accordingly. The second was to apply SpecAug-

ment from torchaudio, adding noise and performing time-

stretching in the range of 0.8× to 1.2×, each with a proba-

bility of 50%.

3.3 Training Method

The model was trained following the same procedure as

ChordFormer. Using the AdamW optimizer, the initial

learning rate was set to 1.0 × 10−3, and it was reduced by

90% if the validation loss did not improve for five consec-

utive epochs. To prevent overfitting, training was termi-

nated once the learning rate dropped below 1.0 × 10−6.

4. RESULTS

The evaluation metric (WCSR) computed using mir_eval

[5] with 178 songs from the Isophonics dataset and 100

songs from the RWC-POP [6] dataset is presented below.

Metrics Isophonics RWC-POP

Root 0.8234 0.8454

MajMin 0.8139 0.8286

MajMin-Inv 0.7875 0.8082

Seventh 0.6645 0.6795

Seventh-Inv 0.6470 0.6616

Table 1. Weighted Chord Symbol Recall (WCSR) across

datasets

Input # shape: (24, 1000, 252)

Conformer

Conv1d

BatchNorm1d

Swish

Linear

shape: (24, 1000, 256)

１octave

stride size of

a semitone

Conformer

Feed Forward

Module

Multi-head

Self-Attention

Module

Convolution

Module

Feed Forward

Module

LayerNorm

Input # shape: (24, 1000, 252)

4×

Linear

Eb7(11)

CRF Decoder

…Bass B-interval-11Key Root Degree
Octavewise

Convolution

Module

5. REFERENCES

[1] M. W. Akram, S. Dettori, V. Colla, and G. Buttazzo,

“Chord-Former: A Conformer-Based Architecture

for Large-Vocabulary Audio Chord Recognition,”

arXiv preprint arXiv:2502.11840, 2025.

[2] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang,

J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu, et al.,

“Conformer: Convolution-augmented transformer

for speech recognition,” Proc. Interspeech 2020,

5036-5040, doi: 10.21437/Interspeech.2020-3015

[3] B. McFee, C. Raffel, D. Liang, D. P. W. Ellis, M.

McVicar, E. Battenberg, and O. Nieto, “librosa: Au-

dio and music signal analysis in python,” in Proceed-

ings of the 14th Python in Science Conference, vol.

8, 2015.

[4] J. A. Burgoyne, J. Wild, and I. Fujinaga, “An expert

ground truth set for audio chord recognition and mu-

sic analysis,” in Proceedings of the 12th Interna-

tional Society for Music Information Retrieval Con-

ference, Miami, FL, 2011, pp. 633–638.

[5] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O.

Nieto, D. Liang, and D. P. W. Ellis, “mir_eval: A

transparent implementation of common MIR met-

rics,” in Proceedings of the 15th International Soci-

ety for Music Information Retrieval Conference,

2014.

[6] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka,

“RWC music database: Popular, classical, and jazz

music databases,” in Proceedings of the 3rd Interna-

tional Conference on Music Information Retrieval

(ISMIR), 2002, pp. 287–288.

