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ABSTRACT

We present Beat-U, a multi-task U-shape Transformer for
music understanding across multiple timescales. It jointly
addresses four sequential MIR tasks—beat tracking, down-
beat tracking, chord recognition, and structure analysis—
assigning each to a proper temporal scale while benefiting
from shared representations. Training and evaluation are
conducted on public beat-tracking datasets and an inter-
nal J-Pop corpus annotated for all four tasks. Experiments
show highly competitive results across all tasks on pop mu-
sic, while a genre-breakdown analysis reveals underfitting
on more diverse styles, likely due to the predominance of
J-Pop in the training data. This highlights cross-genre gen-
eralisation as an important direction for our future work.

1. INTRODUCTION

Music foundation models have opened new possibilities
for music information retrieval (MIR). Examples include
BERT-style models for music audio [1,2], generative mod-
els [3-5], and cross-modal architectures aligned between
audio and other modalities [6-8]. Through large-scale
pre-training, these models produce intermediate represen-
tations that capture broader aspects of musical content,
thereby enhancing performance across diverse downstream
MIR tasks. Such a paradigm has proven particularly effec-
tive for time-invariant tasks, including genre/key classifi-
cation [9] and music captioning [10], where a global la-
bel is derived from aggregated representations. However,
extending pre-trained music representations to sequential,
time-varying tasks remains challenging [11, 12].

In this pilot study, we investigate how multiple sequen-
tial MIR tasks can be integrated into a shared representa-
tion framework. We focus on four classical tasks: (1) beat
tracking, (2) downbeat tracking, (3) chord recognition, and
(4) structure analysis. Figure 1 illustrates that all four
tasks share a common formulation as sequence classifi-
cation problems, which involve boundary detection (i.e.,
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Figure 1. Beat, downbeat, chord progression, and phrase
structure exhibit hierarchical dependencies within a piece
of music, each unfolding at a distinct timescale.

binary 0/1 labels) and, optionally, interval classification
(e.g., chord qualities). Despite the commonality, each
task requires a distinct temporal resolution to localise the
boundaries, which may not naturally align with that of pre-
trained music representations. Moreover, the hierarchical
dependencies in this multi-task setting are not explicitly
encoded by existing music foundation models.

To enable multi-task, multi-resolution sequence mod-
elling, we propose Beat-U, a U-shape Transformer jointly
designed for beat/downbeat tracking, chord recognition,
and song structure analysis. Analogous to U-Net [13], the
proposed model comprises stacks of Transformer encoder
modules interleaved with downsampling and upsampling
operators. Beat tracking, the most fine-grained boundary
detection task, is handled at the top level without down-
sampling, while structure analysis, requiring the coarsest
temporal scale, is modelled at the bottom, most downsam-
pled level. Downbeat tracking and chord recognition are
assigned to intermediate levels, each aligned with an ap-
propriate temporal resolution. This design ensures that ev-
ery task operates at a proper timescale and mitigates the
class imbalance between positive and negative labels in se-
quence classification. Furthermore, by integrating all four
tasks within a unified framework, we can leverage shared
representations such that the joint hierarchical understand-
ing benefits individual tasks.

In our preliminary experiments, we train and evalu-
ate the proposed model on public beat/downbeat tracking
datasets in addition to a larger internal J-Pop music dataset
annotated for all four tasks. Experimental results on pop
music demonstrate highly competitive performance across
each task. A genre-specific breakdown, however, suggests
possible underfitting to other genres, likely due to the pre-
dominance of J-Pop in our training data.
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Figure 2. Beat-U is a U-shape Transformer with 7 encoder blocks across 4 levels of temporal resolution. Each level models
a designated MIR task (beats, downbeats, chords, and structure), enabling joint modelling across hierarchical timescales.

2. METHOD

We propose a Transformer-based U-shape architecture
with 4 levels of timescale abstraction, each tailored to a
specific MIR task. Section 2.1 introduces our music repre-
sentation, and Section 2.2 details the model architecture.

2.1 Music Representation

We use the EnCodec-32k model [14] to preprocess music
data, encoding each song as a discrete code sequence of
50Hz. EnCodec representations retain rich musical con-
tent and have been adopted as the input space for several
music foundation models. Compared with spectrograms
or deeper continuous embeddings, their discrete codes are
also more efficient to handle. For model input, we recover
the continuous representations from the pre-trained vector-
quantisation codebook, which, in our preliminary exper-
iments, outperformed learning new embeddings directly
from the discrete codes.

2.2 Model Architecture

As shown in Figure 2, our model comprises 7 stacked
Transformer encoder blocks. Connected through down-
sampling and upsampling operators, these blocks span 4
temporal-resolution levels and form a U-shape architec-
ture. The input sequence is gradually downsampled by a
factor of 2 at each block and then upsampled back to the
original resolution. At every resolution level, the output is
projected through a linear layer to the boundary (and qual-
ity) detection logits for an MIR task at that very timescale.

Each encoder block consists of 8 Transformer layers
with dilated self-attention, an efficient sparse attention im-
plementation optimised for beat/downbeat tracking [15].
The attention window has a base length of 9 and expands
exponentially as the layer goes deeper. The layers in one
block yield a receptive field of 2,048 frames (i.e., each
frame can reach up to 1,024 frames away on both sides).
At the top-level block without downsampling, this corre-
sponds to 40s audio at a S0Hz frame rate. At the bottom-
level with 8x downsampling, the receptive field is stretched
up to Smin at 6.25Hz. Across all 4 levels, our model cap-
tures hierarchical timescales from local segments to the en-
tire song. Different MIR tasks are supervised at selected

Figure 3. Genre distribution for the Balanced test set.

timescales: beats at 50 Hz, downbeats at 25 Hz, chord pro-
gression at 12.5 Hz, and structure boundaries at 6.25 Hz.
Blocks at the same timescale are linked with skip connec-
tions, enabling the integration of both coarse, global infor-
mation and fine-grained, local detail.

3. PRELIMINARY EXPERIMENT
3.1 Datasets

We leverage an internal dataset of 10k music pieces, pri-
marily in J-Pop, annotated with genre, beat/downbeat,
chord progression, and structural boundaries. For evalu-
ation, we hold out two test sets: (1) JPop: 250 pieces ex-
plicitly labelled as J-Pop, and (2) Balanced: 239 pieces
spanning a broader range of genres. While the latter set re-
mains biased toward J-Pop, it provides a wider genre cov-
erage as shown in Figure 3. The remaining pieces are split
90%—-10% for training and validation. We apply pitch aug-
mentation by transposing each training sample to £3 semi-
tones. As this preliminary study places more emphasis on
beat tracking, we also incorporate public beat/downbeat
tracking datasets: Ballroom [16], Hainsworth [17], RWC-
Pop [18], Harmonix [19], and SMC [20]. Each of these
datasets is split 90%—10% for training and validation.
GTZAN [21] is held out exclusively for testing.

3.2 Configuration and Training Details

Across the Transformer layers, we apply 8 attention heads,
0.1 dropout ratio [22], and layer norm [23] before atten-
tion. The hidden dimensions are set to dp,o4e1 = 128 for
the attention layers and dg = 512 for the feed-forward lay-
ers. In addition to sinusoidal positional encoding [24], we



Beat Accuracy Downbear Accuracy Chord Accuracy Structure Boundary
Test Set Model F-Measure CMLt AMLt F-Measure CMLt AMLt MeanSeg MajMin HR.SF  HR3F
Beat-U (Ours) 0.966 0.945  0.971 0.957 0931 0951  0.886 0.807  0.739 0.767
Beat-This 0.940 0.896  0.866 0.916 0.864  0.832
JPop Jiang et al. 0.901 0.800
All-In-One 0.920 0.813  0.930 0.900 0.804  0.927 0.576 0.740
Beat-U (Ours) 0.926 0.902  0.931 0.895 0.872 0907  0.874 0.819  0.673 0.711
Beat-This 0.906 0.845  0.877 0.863 0.767  0.811
Balanced  Jigng et al. 0.890 0.812
All-Tn-One 0.876 0.786  0.900 0.827 0.765  0.880 0.534 0.684

Table 1. Comprehensive evaluation for four MIR tasks on the JPop and Balanced test sets.

incorporate relative music timing condition [3] to indicate
the progressive structure of a song. The complete model
comprises 10.3M learnable parameters.

For model training, each boundary detection task is for-
mulated as a binary sequence classification problem, where
steps in the sequences are labelled as either 1 or 0. We
adopt the shift-tolerant BCE loss [25] to encourage con-
fident, sharp peaks for each task. The tolerance window
is set to 3, 2, 2, and 2 frames for beat, downbeat, chord
boundary, and structure boundary, respectively. Positive
examples are further weighted to address class imbalance.

The model is trained on entire music pieces with a batch
size of 16 for 150 epochs (100k iterations), using two H100
GPUs under FP16 precision. Optimisation is performed
with AdamW [26] at an initial learning rate of 1e-4, sched-
uled by a 250-step linear warm-up followed by cosine de-
cay to a final rate of le-6. At test time, peak picking [25]
is applied to extract boundaries from the raw activations.

3.3 Evaluation Results

We select three baseline models: Beat-This [25] for beat
and downbeat tracking, Jiang et al. [27] for chord recog-
nition, and All-In-One [28] for song structure analysis.
We report evaluation results using standard metrics: F-
Measure and continuity metrics for beat/downbeat track-
ing, MeanSeg and MajMin for chord recognition, and hit
rates at 0.5s and 3s for structure boundary detection.

Table 1 presents the evaluation results on J-Pop and Bal-
anced across the four MIR tasks. For beat and downbeat
tracking, our model outperforms the baseline by a clear
margin, particularly on continuity metrics. For structure
boundary detection, we also observe improvements, most
notably on the finer HR.5 metric. These improvements
suggest that our model can more consistently capture the
metrical structure of a song, presumably benefiting from
our multi-task formulation, architectural design, and the
ability to process entire songs at a time. Chord recogni-
tion accuracy is comparable to the baseline, with a slight
improvement in major/minor quality classification. Over-
all, both our model and the baselines perform better on the
J-Pop dataset than on the Balanced set, which is expected
since pop music generally exhibits a more straightforward
metrical structure. This also highlights the challenge of
accurately modelling more diverse music genres.

With this in mind, we further evaluate our model on

Beat F-Measure Downbeat F-Measure

Genres

Ours Beat-This Ours Beat-This
Overall 0.850 0.891 0.736 0.787
Country  0.930 0.944 0.903 0.915
Disco 0.965 0.966 0.931 0.937
Hiphop 0.945 0.975 0.851 0.898
Pop 0.944 0.953 0.923 0.939
Reggae 0.908 0.907 0.745 0.688
Rock 0.907 0.930 0.793 0.821
Metal 0.847 0.877 0.757 0.769
Blues 0.787 0.831 0.552 0.639
Jazz 0.757 0.868 0.534 0.749
Classical  0.508 0.659 0.353 0.514

Table 2. Genre-breakdown evaluation on the test-only
GTZAN dataset for beat and downbeat tracking.

the GTZAN dataset for beat/downbeat tracking and anal-
yse the results by genre. GTZAN contains 1k music seg-
ments spanning 10 diverse genres, including pop, jazz, and
classical. As shown in Table 2, our model remains highly
competitive with the baseline on Disco, Reggae, and Pop,
but performs notably worse on Blues, Jazz, and Classical.
This suggests underfitting to non-pop genres, likely due
to the predominance of J-Pop in our training data. These
genres often feature more diverse acoustic instrumentation
and more dynamic tempo variations, and we aim to address
these challenges in our future work.

4. CONCLUSION

In this pilot study, we introduced Beat-U, a U-shape Trans-
former architecture for multi-task, multi-scale MIR. By
assigning beat, downbeat, chord, and structure analysis
to different temporal resolutions within a unified frame-
work, our approach balances label sparsity and captures
both fine-grained and global musical context. Preliminary
experiments on public datasets and internal J-Pop corpus
demonstrate highly competitive performance, particularly
on pop music, with improvements in beat/downbeat track-
ing, chord recognition, and structure boundary detection.
Despite these improvements, the current model is lim-
ited to simple chord qualities and structure boundaries. In
future work, we plan to incorporate chord tensions and
structural functions to enhance its capability and versa-



tility. We also aim to investigate augmentation strategies
and leverage larger, more diverse datasets to improve the
model’s generalisation across musical genres and styles.
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